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ABSTRACT

A model is developed which provides for the generation of the

approximate spectra of pulsed signals with arbitrary amplitude

and frequency modulation. Error bounds associated with the model are

developed providing an insight into performance accuracy. The concept

of using two approximate spectra to generate a more exact spectrum

by means of computationally trivial calculations is addressed.

The model is used to validate the feasibility of using frequency domain

discriminants in the signal classification process.
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I. INTRODUCTION

The classical radar pulse consists of a rectangular pulse modulating

a constant carrier frequency. This gives rise to the characteristic

(sin(x)]/x spectrum centered about the carrier frequency.

In practice, this idealized pulse is not realized since pulse

envelopes tend to be more trapezoidal than rectangular and since carrier

frequencies are not, de facto, constant. Frequency modulation (FM),

intentional or unintentional, may be a property of all radars. As an

example of this, oscillators may experience finite turn-on and shut-down

periods during which a transient frequency modulation can be introduced

onto the carrier. Figure 1 illustrates what a typical instantaneous

frequency of a "constant" carrier radar pulse might look like.

The question of how modulation affects the frequency spectrum is

one of interest in pulse analysis. Thus it is desirable to model the

amplitude spectrum of a pulse with arbitrary amplitude and frequency

modulation to provide a vehicle to study the effects of modulation on

the amplitude spectrum.

One approach to this general modeling problem is to generate a digital

representation of the pulse waveform and apply a Discrete Fourier Trans-

form (DFT) algorithm to the data to generate the frequency domain

representation. This approach for the general case can be cumbersome

in generating the digital signal, satisfying the Nyquist criteria, and

trading-off between frequency resolution and transform size.

An approach to addressing the amplitude spectrum of frequency modu-

lation waveforms is to view the problem in terms of the quasi-stationary

11
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Instantaneous Frequency(fi(t)]

Figure 1 -Instantaneous Frequency Function

Associated with a Pulsed Signal
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principle. The fraction of time thet the instantaneous frequency for the

waveform spends in a particular frequency interval is the fraction of

power that belongs to the corresponding Fourier frequency interval.

This principle, however, is only validly applicable asymptotically for

large modulation indices. (1].

Holway and Mullen (1] have addressed a special case of FM spectra

generation. Using a Fourier Series approach and with the aid of Fresnel

integrals, a closed form expression has been developed for the line

spectrum for periodic frequency modulated signals in those cases when

the modulating function is trapezoidal. This model is flexible in that

the form of the trapezoidal modulation can be varied from square-wave

modulation at one extreme to saw-tooth modulation at the other.

As with the work of Holway and Mullen, the model developed in this

paper uses the Fresnel integral as one of its keystones, but addresses

a broader scope of modulated signals. The Elemental Cell Model which

is to be addressed is designed to generate the approximate spectrum of

pulsed signals with arbitrary amplitude and frequency modulation. The

approach is to partition the amplitude envelope and instantaneous

frequency function associated with a signal into an arbitrary number of

"elemental cells" of arbitrary length. Across each elemental cell the

amplitude and frequency is linearly approximated so that the original

envelope and instantaneous frequency function have both been formed into

piecewise linear continuous functions. Each elemental cell has associated

with it a characteristic frequency spectrum which can be represented in

closed form. With phase continuity maintained between contiguous cells,

the individual elemental cell spectra can be summed to provide the

approximated spectrum of the original signal. This model provides a

13
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flexible, easy to use tool for spectrum analysis.
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II. ELEMENTAL CELL MODEL

A. DEVELOPMENT OF THE ELEMENTAL CELL MODEL FOR THE UNIT PULSE

In this section, the elemental cell model is developed for the unit

amplitude pulse waveform. The model provides a flexible, easily applied

method of generating approximated spectra for pulsed signals with arbitrary

frequency modulation. The approach of the model is to decompose pulse

waveforms into sequences of elemental (waveforms) cells, each of which

has a characteristic spectrum in closed analytic form.

Consider a unit pulse with an arbitrary frequency modulation as shown

in figure 2. The pulse waveform, p(t), can be expressed analytically as:

for Tpo" if A'T where:

T po - pulse starting time

fc - pulse carrier frequency

PO7) - initial pulse carrier phase

kf = constant of proportionality

m(x) - frequency modulating function

- pulse width

The instantaneous frequency function, fi(t), associated with this pulse is:

(11-2) Aa e4 * tts

15
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Figure 2 -Arbitrary Frequency Modulation Function, m(t)
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The spectrum of the pulse waveform can then be expressed as the

Fourier Transform of p(t) in equation (II-1):

(11-3) Pf J) t) itdt

But since p(t) is nonzero only during the pulse duration:

(11-4) t y i

The difficulty in evaluating this expression lies in the fact that p(t)

is a function of m(t). Since m(t), in general, is not representable in

analytic form, its integral and ultimate application to equation (11-4)

is mathematically untractable. An exact spectrum for a pulse with arbi-

trary frequency modulation can be generated using equations (1I-1) and

(11-4) for only certain m(t). However, the concept of approximating m(t)

across the pulse holds promise for generating approximate spectra.

Since integration is a linear operation, the integral in equation

(11-4) can be partitioned and rewritten as the sum of n integrals. This

is, in essense, the decomposition of the waveform, p(t), into n contiguous

cells. The linear additivity property of the Fourier transform then allows

equation (11-4) to be written as:

(11-5) fpa(7 £... W I J~

where in the case at hand to " Tpo and tn7 Tpe+ V

The spectrum, then, of the pulse waveform with arbitrary frequency

17
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modulation, p(t), can be thought of as being composed of the sum of the

spectra of elemental cells. If each elemental cell has a characteristic

spectrum associated with it, then P(f), the total pulse spectrum, can be

generated quite easily. However, the problem of dealing with the untrac-

table form of m(t) across the pulse and elemental cells still persists.

There are cases, however, in which the approximation of m(t) across an

elemental cell results in that cell having a spectrum that is representable

in closed analytic form. For example, consider the case where m(t) is

approximated by a constant value across an elemental cell. Let the left

end point of the cell be To, the cell width be t, the initial phase of

the cell be O(T and the radian center frequency of the cell be w .c

The characteristic spectrum of this constant frequency unit cell, Z(f),

is of the form sin(x)/x and is written as:

(11-6) NO=.1 .(w.w)tj -"*(r)lI e]'(,c#.0)1]

Thus the elemental cell's spectrum can be generated for any frequency

component as long as the four cell parameters (To,f, Oc and ( ) )

are known.

A similar type of characteristic spectrum results if e(t) is linearly

approximated across an elemental cell. Consider the instantaneous fre-

quency function shown in figure 3. Let a unit call be selected as shown

extending from To to To+1. Then the Fourier Transform, Z(f), of this

elemental cell is:

-Ttr(11-7) =ff ftI 4 rwtst

18
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where p e(t) is that segment of p(t) (equation 11-1) contained within

the elemental cell under consideration. The Instantaneous frequency of

this cell is:

(11-8) f) 2 iAIt 7~~#

Let the instantaneous frequency (f (t)) be linearly approximated (^i(t))

as shown in figure 3, then:

(11-9)

where/ is the frequency sweep rate,/ - (f2-fl)/f. Such linear FH is

called "chirp" modulation. Using equation (11-9), the approximated

instantaneous phase can be expressed as:

(1I-10a) Ow: #(7) (Xr'~f .,~ --0JCf 7 At ;,

(II-lob) $' (T)I

This gives rise to the approxite form of the Fourier Transform of the

j elemental cell.

ZM ,I. u- . + -ft t

By expressing the cosine as a sum of exponentials, completing the square

of the exponential arguments and letting

20
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(II-12a) ,

equation (II-11) reduces to:

(11-13) Z(f): 'g'a + i-'X~jdea
0__ e)

where:

(II-15a) 9( ??7

(II-15b) 7ZiM

(II-15c) ZJ L 1j( +)

(II-15d) +J (F +

* The integrals in equation (11-13) are the Fresnel integrals. They can

be evaluated with the use of tables, the Cornu spiral or the r-method

of Lanczos(2). Equation (11-13) can be written more compactly as:

21



where the Fresnel integrals are given by:

I2

(II-17b) C (y) z Cos(E)v
0

Thus the Fourier Transform of the elemental cell with a linear frequency

sweep can be obtained in a straight-forward manner by evaluating the

Fresnel integrals. The derivation provided assumes that the frequency

sweep within the elemental cell is positive. It can be shown that if

the sweep rate is negative the governing equation is similar to equation

(11-16),

(1I-18) Z6)€ "-  -' UC(LI")- C (SLM')S #j)

where the primed variables are now defined as:

(-19) ' 4/'T) Oc.) -,,fTrf , J( -)

(l:'-19b) /.,I"-qq "" (' ) I

(II-20a) iL

S(11-20b) z z

(11-20c) fL

22



(II-20d) Zi:-_

Thus as with the case of a constant frequency elemental cell, the spectrum

of a cell with a linear frequency sweep can be generated for any frequency

component given the cell parameters:To9, .{To),f 1 , and .

In summary, an approach has been developed using an approximation to

arbitrary FM to generate an approximation to the pulse spectrum. The

instantaneous frequency, fi(t), is linearly approximated over an arbitrary

number of elemental cells of arbitrary duration. The Fourier transforms

of these elemental cells (of the constant frequency or chirp form) are

then coherently summed to produce an approximation to the original pulse

spectrum. Appendix A is a program listing for implementation of the

elemental cell model. Nomenclature and notation in the listing parallels

that of the development above. The program in the appendix treats the

unit pulse problem as a special case of the more general model developed

in section IV.

B. ILLUSTRATION OF THE ELEMENTAL CELL MODEL FOR THE UNIT PULSE.

It is desirable to model an FM pulse for which an exact spectrum can

be generated so that some insight into and assessment of the model per-

formance can be made. It is equally desirable to model a pulse in which

the instantaneous frequency profile is dynamic; i.e., constantly changing

across the pulse. Both of these objectives are achieved by selecting a

pulse which is subject to sinusoidal frequency modulation. Appendix B ad-

dresses the generation of spectra for pulses with sinusoidal FM.

23
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Consider the case of a 5 microsecond pulse, which has an instanta-

neous frequency function, f i(t), given by:

(11-2 1) ff If) Z 6 co fWO ti

where

fc M carrier frequency - 30 MHz

kf - modulation index - 1.0

fm - modulating frequency - 200 kHz

This instantaneous frequency function is illustrated in figure 4. The

figure demonstrates, using two examples, the linearization and elemental

cell formation process. In case I, two element cells are used to generate

the spectrum while in Case II, six cells are used. Assume that the desired

frequency resolution is 25 kHz and that the primary interest rests in

the first three upper and lower spectral sidelobes. In generating the

spectrum then, 80 frequency components are required at 25 kHz intervals

starting at 29 MHz. It is worth noting that in the elemental cell model,

there is no requirement that the frequency or time intervals be of equal

size. Since the spectral components are generated by evaluating analytic

expressions for specific frequencies, the spectral values for any combi-

nation of frequencies can be produced.

Figure 5 displays the model-generated amplitude spectra for the cases

developed in figure 4. The solid curve represents the exact amplitude

spectrum developed according to Appendix B. It is not at all unexpected

that the 6 cell model provides a more accurate solution than the 2 cell

model. It is of interest, however, that the two cell model in itself

provides a good approximation to the exact spectrum. The question that

24
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f (t) [MHz]

30.2

29.8

(a)

f i(t) [MHz]

30.2-

29.8

(b)

Figure 4 -Elemental Cell Generation Uing (a)

Two and (b) Six Cells to Model

Sinusoidal Frequency Modulation
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naturally arises is how well do the results of the model approximate

those of the actual spectrum?

27
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III. ERROR ANALYSIS APPLIED

TO THE ELEMENTAL CELL MODEL FOR THE

UNIT PULSE

A. ERROR BOUND

How accurate is the elemental cell model? How many cells are

required to achieve a given accuracy? More basically, how does the

model accuracy change as the number of elemental cells is increased

or decreased?

This section assesses the elemental cell model performance in terms

of error bounds. The establishment of these bounds is based on an

approach used by Gerald(3) and is developed in conjunction with

Schoenstadt (4).

In analyzing the errors associated with the elemental cell model

essentially two pulses are being compared:

(1) the actual pulse, p(t)

C03 [0(03 7

(2) the approximated pulse, t(t)

28
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where:

Tpo - pulse start time

TP - pulse duration

St) - pulse instantaneous phase

t) - pulse approximated instantaneous

phase based on the linearized instantaneous

frequency function

In analyzing the spectral error, the instantaneous frequency error

is first addressed. This forms the foundation for the phase error

analysis and ultimately the pulse and spectral error analysis.

Consider the instantaneous frequency function, fi(t), shown in

figure 6. For simplicity, n elemental cells of equal length, h, can

be used to generate the piecewise linear approximation, '?i(t), such that:

H' 5(111-3) fix '{ :0,, ) -t-'.,,-'L'Z)

where: linear approximation of the instantaneous frequency

function across the kth cell.

/ x) - unit step function

If it is assumed that fi(t) is at least twice differentiable,

Gerald(3) shows that the error introduced by the linear approximation in

the k cell, ek(t), can be expressed as:

29
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where tk.ltdtk and t k-i'1 4- tk.

In the actual pulse equation, however, the instantaneous frequency

error is reflected as an error in the instantaneous phase; namely,

Assume that (Tpo), the initial phase, is known. Since 0(Tpo) can be

set arbitrarily, allow (Tpo) to be equal to #Tpo) causing the first

two terms on the right to vanish. Over the interval Tpo to Tpo +

for any t there exists atk- Tpo+kh such that t'tk. Selecting k to be

the smallest integer such that t*tk, the phase error then at any time,

t, can be bounded from above in the following manner:

tic

(111-6) 10(t) -044) 1- .tf(1iaA3(S)IJS
rpo

This integral can be written as the sum of integrals over the k individual

cells:

where -Tpo + jh. By construction, the limits of integration are such

that the integrand in each term of the sumation is given by equation

(111-4). Thus,

(118 Ot " f w i

1

31
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for Z h,' tj' By a change of variable, let hW. S-ta

so that I
f11-9 1 * f Ah J W(W -oI (1)

for OhN I. The theorem of the mean for integrals states that

provided that g(x) does not change sign on the interval of integration

and that Nis found in the interval of integration. By virtue of this

theorem, equation (111-9) can be written:

Ohi

for O1"-[. Equation (III-11) essentially expresses the bound on the

instantaneous phase error as the accumulation of errors over k individual

elemental cells. An upper bound can be set on the second derivative of

the instantaneous frequency in each cell such that for the j th cell the

bound is Mj -max (f ) fort.'Li4 1 . Making use of this bound and

integrating equation (IIZ-1l) yields:

More generaly the second derivative can be bounded over the entire pulse

such that M - max Mi for j 1,2,3,.....,k. It follows then that

32

N a.



equation (111-12) becomes:

-3
(111-13) £i, 3~

The original selection of k, however, required that T po+h(k-l)At-Tpo+hk.

In other words, khtt-Tpo+h. Making use of this and the fact that hn

equation (111-13) can be written:

Thus an upper bound on the absolute phase error has been obtained as a

function of time. It now remains to relate this error to the actual

pulse error.

The absolute pulse error can be formed using equations (111-1) and

(111-2) as:

(111-15) PWt)- Wt) zcs#(~ -0 COSC(t)]

Since the sin(x) is less than or equal to one,

33
i~t

" i15.:



By making use of the fact that lsin(x)J 4 jxl, the pulse error bound reduces

to:

(111-18) CA 96

(111-19) t -W - - t3&

With this knowledge of the pulse error, the bound on the spectral error

can be addressed. Writing the spectral error in terms of the pulse

error,

(111-20) P)-hf) f J
To

where Pf) and 1(f) are the exact and approximated spectra respectively.

The absolute error can be written:

Ip.

Using the derived expression for the absolute phase error (equation

111-14),

(111-22) Pa _ - 4
7rp.

(111-23)~

Additionally, since the absolute value of a difference is greater than or

equal to the absolute value of the difference of the absolute values, the
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bound on the spectrum error using the cell model can be expressed as:

(111-24) 4 11

In general then, the accuracy of the elemental cell model depends on

the maximum value of the second derivative of the instantaneous

frequency function (a measure of how nonlinear the modulation is),

the pulse width and the number of elemental cells which subdivide the

pulse. It is significant to note that the model converges to the actual

spectrum inversely as the square of the number of cells.

While the error bound developed above assumed elemental cells of

equal length and bounded the second derivative of the instantaneous

frequency function across the entire pulse, a tighter bound, and one

which is more generally applicable to elemental cells of unequal length,

can be obtained by bounding the error contribution from each individual

cell and then suming these contributions over the total number of

elemental cells. The total spectrum error is given by

(111-25) Pyf) -k P6 [RU() .. (f)] + [L(P, ()? +...

where Pi(f) and li(f) are the true and approximated spectra respectively

of the ith elemental cell. So that the absolute spectrum error can be

*bounded from above by summing over the absolute error associated with

each elemental cell.
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The absolute spectrum error associated with each elemental cell,

, remains to be developed. Consider the kth elemental

cell as depicted in figure 7. An expression analogous to equation

(111-5) can be developed to describe the absolute instantaneous phase

error at some time, t, associated with the kth elemental cell,

(111-27) Aw 74 fr(;a' + Zv' i , ~f(s) -()J

where ; = - To-g0). In addressing the analogous equation

(111-5), the phase error at the beginning of the pulse was set equal

to zero since O(To) was arbitrarily set equal to #(To). In the general

case, in which successive elemental cells are being considered, O(Tok)

is not arbitrary. The phase difference at Tok must be viewed as a

cummulative error resulting from the approximations made in the succes-

sive elemental cells occurring before Tok. To develop this point, assume

as before that at the beginning of the pulse (that is the first elemental

cell) that *(TJ -OfO,,- r1. Using the above equations, the

phase error at the end of the first cell or, equivalently, at the begin-

ning of the second cell is:

(111- 2 8) 4- sw f - f(s)

Using the expression for the elemental cell instantaneous frequency error

developed in equation (111-4),
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for T01, AI To6 +tI. Applying the mean value theorem of integrals,

bounding the second derivative of the instantaneous frequency across

the cell by its maximum value, MI, and integrating yields:

(111-30) /#'7. -#O1)
Thus the phase error at the beginning of the second cell is a function

of the quality of the approximation made in the first cell. A similar

development can be applied to generate the phase error at the end of

the second cell (beginning of the third cell); the absolute phase error

at the beginning of the third cell being:

The first term on the right is given by equation (111-30) and the integral

can be evaluated as above to yield:

(111-3 2) (M(T.)-k.1)i .

Extending this result, the absolute phase error at the beginning of the

kt h cell can be expressed as:

This result can be applied to equation (111-27) along with the expression

for the instantaneous frequency error in equation (111-4) to develop an
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expression for the absolute phase error associated with the kth cell

as a function of time:

(111-34) 19e- 049/ ToZ ~~(-4 3 ~ t

for TokittTok +tx. This expression for the phase error can be used in

combination with equation (111-21) to form the upper bound on the

spectral error associated with the kth elemental cell.

This represents then a bound on the local spectrum error associated with

the kth elemental cell. To obtain a bound on the global error across

the pulse, the local error of each cell can be su~ed over all of the

elemental cells, as in equation (111-26), so that

While this expression for the error bound is more unwieldy than that

developed in equation (111-24), it has provisions for addressing ele-

mental cells of non-uniform length. It also bounds the second derivative

of the instantaneous frequency ftmction on a cell by cell basis, yielding

a tighter spectral error bound. This tighter bound is, of course, at the
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expense of complexity of evaluation. The determination of the bound

on the second derivative of the instantaneous frequency function, M,

for equation (111-24) may be difficult enough. To further determine

the bounds Hj for all elemental cells for application to equation

(111-37) may be unacceptably tedious. A trade-off can be made to loosen

the error bound of equation (111-37) while preserving the provision for

addressing non-uniform elemental cell lengths by bounding the second

derivative of the instantaneous frequency function across the pulse

(i.e., M- max , j - 1,2 ...... n)

(111-38) ~pE-paf) (a /a~, 4T

Thus various approaches of different degrees of compexity can be

used to develop theoretical maximum error bounds on the spectrum error

associated with the elemental cell model. The choice of approach must

be based on problem complexity and a priori knowledge of the pulse

structure. The most important insight, however, that the maximum error

bound provides is that in applying the elemental cell model, this error

tends toward zero inversely as the square of the number (n) of cells.

B. EMPIRICAL ASSESSMENT

The objective of this section is to assess the actual elemental

cell model performance in the light of the error bounds developed in

section III-A. To achieve this a unit pulse with sinusoidal FM is

examined (as in Section II-B). The pulse is such that the carrier
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frequency, fc' is 30 MHz; the modulating frequency, fm' is 200 kHz;

the modulation index, kf, is one; and the pulse duration,tp, is five

microseconds. The exact spectrum of this pulse can be determined (see

Appendix B). Using the elemental cell model (Section II-B), approximate

spectra can be generated for cases where the number of elemental cells,

n, is 1,2,3 .......... Each of these approximated spectra can then be

compared to the exact spectrum to determine the maximum spectrum error

calculated for n-1,2,3 ........ (For the purpose of this analysis,

frequency components between 29 MHz and 31 MHz are examined at 20 kHz

intervals.)

Since the unit pulse under consideration has an instantaneous

frequency function, fi(t), given by

(111-39) (6' *4 Cos IMtI

the maximum bound on the second derivative of the instantaneous fre-

quency function can be determined analytically. Since this is the "W'

of equation (111-24), that equation can be evaluated to yield the maximum

theoretical spectrum error bound as a function of n, the number of

elemental cells used to approximate the pulse.

It is also possible to generate a tighter theoretical bound on the

spectrum error by using equation (111-37) and determining from equation

(111-39) the bound on the second derivative of the instantaneous

frequency function across each individual cell.

Thus a set of three curves can be generated:

(1) The maximum theoretical spectrum error bound with
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fi"(t) bounded across the pulse (equation 111-24) as

a function of n, the number of elemental cells;

(2) The maximum theoretical spectrum error bound with fi"(t)

bounded across each elemental cell (equation 111-37)

as a function of n;

(3) The maximum calculated spectrum error as a function of n.

Figure 8 presents this set of curves for the pulse with sinusoidal FM

discussed above. The first theoretical bound (equation 111-24) is

represented by the solid line; the second (equation 111-37), by the

dashed line; and the calculated error, by the dotted line. The tightening

of the maximum theoretical error by bounding the second derivative of

the instantaneous frequency function across each elemental cell vice

across the pulse can be observed quantitatively by comparing the solid

and dashed curves. The maximum calculated error (dotted curve) is well

within the bounds set by equations (111-24) and (111-37). In fact, the

calculated error is generally an order of magnitude smaller than the

maximum error bound set by equation (111-24). Inspection of Figure 8

indicates that all three curves generally follow the characteristic

convergence, which goes inversely as the square of the number (n) of

elemental cells.

An important consideration in applying the elemental cell model is

the determination of the number of elemental cells to be used. Obviously,

the greater the number of cells, the closer the approximated spectrum is

to the exact spectrum, but at the cost of complexity and processing time.

The establishment of the inverse squared relationship between the number

of cells and the theoretical maximum error bound allows the determination
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of the minimum number of cells required as a function of the maximum

tolerable error. Let E be the maximum tolerable error, then equation
(111-24) can be written as:

(111-40)

so that

3 11.11
(111-41) A _______

or for the case when the number of cells in large:

(111-42) 2 •

For example, in the case of the unit pulse with a 200 kHz sinusoidal

FM discussed above, the spectrum has a peak value on the order of

(/2) 2.5xi0 "6 . If the interest is primarily in the mainlobe, the

maximum tolerable error may be an order of magnitude less than the peak

value, so that g- 2.5x10-7. Then, knowing the value of M and

equation (111-42) can be evaluated (or, equivalently Figure 8 could be

consulted) to determine that 15 cells (n - 14.3) are required to assure

that the maximum tolerable error is not exceeded. In this example,

n-15 provides considerably more accuracy than is required, but does

also provide the guarantee that the error will not be greater than the

accepted limit.

In practice, the second derivative, used freely above, may seldom be

available in analytic form. In those cases, a sizing of the problem can
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be made using the central difference approximation to the second deriv-

ative (3). Specifically, given a function g(t), as in figure 9, the

approximation to the second derivative at TO is:

(111-43) A_ ~ q~±

In the case of the test signal discussed above, the maximum of the

second derivative of the instantaneous frequency function across the

pulse is given by: M - 3.1583xi017 . If the central difference

approximation of equation (111-43) is applied to the test pulse at

To - 2.5 microseconds for various values of h and the resulting

approximated derivatives applied to equation (111-42), the following

estimates of the numbers of cells required to produce an error no

worse than 2.5xi0-7 are obtained:

for h - 1.2500/s; fi(To) - 2.56xi01 7; n - 12.6

for h - 0.6 250s; ?"(TO) - 3.00xi01 7 ; n - 13.7i3

for h - 0.3125,mp; ?"(TO) - 3.12x101 7; n - 13.9

Thus this approximate approach to sizing the modeling problem is in

close agreement with the exact solution of n - 14.3.

The maximum error bounds developed in Section (III-A) provide a

valuable insight into the nature of the convergence of the elemental

cell model and a useful tool in determining the number of elemental

cells required to model a specific pulse.
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C. ASSESSMENT OF ERRORS ACROSS THE SPECTRUM

To this point, the error analysis has addressed the worst case,

maximum error bound, aspects of the elemental cell model and has

emphasized the 1/n2 convergence. But this maximum error is simply a

bound and does not address the error associated with individual fre-

quency components across the spectrum.

Consider the difference, Et, between the exact and the approximated

pulses in the time domain,

(111-44) C = ca(t060 - C as 14(03

where 9t) is derived from the instantaneous frequency function, fi(t),

equation (11-2) and 0(t) is similarly derived from the linearly approx-

imated instantaneous frequency function, ^i(t). Then #(t) and (t) are

related by:

(111-45) ( t + C10

where *t) is the phase error as a function of time such that

(111-46) 16(jf - 0'1t) I? vo
0

(111-47) (t) arfe(7c)J

where e(t) is the instantaneous frequency error as a fmction of time.
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Substituting equation (111-45) into (111-44) yields:

(111-48) z(e Cos [$(o + d(td -Co's~

(111-49) O(lt)si~

If f(t) is small, that is, for example, if E(t) is 0.5 (arbitrarily),

then

Additionally, if 0t)>', then

If C(t) has a Fourier Transform, E(f), and sin 0(t) has a Fourier Trans-

form, (f); then the error associated with Et(t) in the frequency domain,

El(f), is given by the convolution of E(f) andl(f).

(111-52) e(* ~AtO ~ ~~D~f:4

While this expression is far from simple, it may provide an insight into

the behavior of errors across the spectrum as the number of elemental

cells is varied.

Consider, again, the test pulse of unit amplitude with sinusoidal FM.

If this pulse is modeled, using four elemental cells, the instantaneous

frequency error, e(t), and the instantaneous phase error, d(t), can be
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generated as in figure 10. Before applying the instantaneous phase

error function to equation (111-52), let us first examine the appli-

cability of the equation to the case at hand.

In arriving at equation (111-51) and, ultimately, (111-52), two

assumptions were made: (1) that the instantaneous phase error, f(t),

was small (that is that f(t)a sin(&(t)) and (2) tbat t)Pd 96)

Figure 10 illustrates that assumption one is satisfied; i.e. 6(t)'- 0.5.

As for assumption (2), generally, (t) behaves as 0(t), so that

(111-53) ~ )~or-~~~n7

for T in microseconds. Realizing that this function is based on modulo

two pi, there will be a few cases where 64)e1(t), but in general over

the pulse (,t) 6 L). (See Figure 11).

Consider now the instantaneous phase error, 9(t), in figure 10, in

the light of equation (111-52). The Fourier transform of 6(t) is

essentially a sin(x)/x function centered about the carrier frequency,

in this case 200 kHz. In actuality, the spectrum is not quite this

straightforward, because of the relative proximity of carrier frequency

to the origin (f-0). The spectrum, as shown in figure 12, is, in general,

characterized by two main lobes of 400 kHz, sidelobes of 200 kflz, and

a spacing between the mainlobes on the order of 440 kHz.

The basic form of the spectrum, f(f), generated by the instantaneous

frequency function, .(t), is of the form shown in figure 13. Ef(f),

can be considered generally based on figures 12 and 13. It is expected

that Ef(f) would have a basic sin(x)/x form with two mainlobes being

about 400 kHz wide and symmetrically spaced 220 kHz above and below the
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peak frequency component of t(f). Further, it would be expected that a

negligible error would be associated with the peak value of (f) and

that the upper and lower sidelobes of Ef(f) would be about 200 kHz

Iwide. Figure 14 is helpful in addressing this qualitative analysis of

Ef(f). The solid line in the figure represents the exact spectrum of

a unit pulse with a 200 k11z sinusoidal frequency modulation imposed

upon it. (i.e. The test signal discussed above). The additional

projections (x's, circles and triangles) represent the spectrum error,

Ef(f), associated with the modeling of the test signal using four,

eight and sixteen elemental cells, respectively. For the moment, the

case of four elemental cells will be addressed. Note that the mainlobes

of Ef(f) are on the order of 400 kHz wide and that these lobes are

centered fairly symmetrically about the peak value of P(f), being offset

by 200 to 250 kHz. As predicted, the upper sidelobes tend to decrease

in width to the order of 200 kHz. Thus, while equation (111-52) is

fairly unwieldy, a basic insight into the behavior of Ef(f) can be

obtained.

Consider now the two additional cases presented in figure 14 for

the cases when eight and sixteen cells are used. The instantaneous

frequency and phase error for an eight cell and a sixteen cell simulation

are shown as functions of time in figures 15 and 16, respectively. It

can be seen that in both cases the instantaneous phase error departs

slightly from that examined under the case n-4, but that the general form

of E(t) persists. In the frequency domain, this is reflected in the

similar forms of Ef(f) for n-4,8,16. Of particular interest is the

scaling associated with each of the three phase error functions. All

three instantaneous phase error functions are forms of a perturbed
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200 kHz waveform with varying amplitudes:

for four cells, the amplitude is .214 radians

for eight cells, the amplitude is .051 radians

for sixteen cells, the amplitude is .012 radians.

So that in increasing the number of cells from four to eight, the peak

phase error is reduced by a factor of 0.24. An increase in the number

of cells from eight to sixteen reduces the peak phase error by a factor

of 0.24. Considering then the convolution of equation (111-52) and

assuming that P(f) is essentially constant for n-4,8,16, it would be

expected that Ef(f) would be improved by about a factor of 0.24 for

increases in the number of elemental cells from four to eight and from

eight to sixteen. This is, in fact, the case generally portrayed in

figure 14. Typically, the improvement experienced in going from four

to eight cells and from eight to sixteen cells is on the order of a

0.20 to 0.25 reduction in the spectrum error. Again, this reduction

in spectrum error by a factor of 4 when the number of elemental cells

are doubled is characteristic of the 1/n2 convergence discussed in

section III-A. While some abberations occur in the convergence to the

exact spectrum (e.g. between 29.0 and 29.4 MHz), it is significant that

the convergence across the spectrum is generally uniform. Even in cases

of anomalies (29.0 to 29.4 MHz), the convergence tends to be uniform

as n increases.

In summary, by examining the phase error, it is possible to project

the basic form of the spectrum error, EV(f) and, perhaps of more signif-

icance, to examine the behavior of the spectrum error as the number of
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cells is varied. This provides an important insight into Ef(f) and

the convergence of (f) to P(f).
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IV. GENERALIZED ELEMENTAL CELL MODEL

A. DEVELOPMENT OF THE GENERALIZED ELEMENTAL CELL MODEL

The elemental cell model developed in Section II accommodates a

unit pulse with arbitrary frequency modulation. That model can be

generalized to accommodate arbitrary amplitude modulation. The modeling

approach is the same, i.e., the pulse is decomposed into elemental cells

and across each elemental cell the frequency and amplitude modulation

are linearly approximated. Thus, in the generalized model, both the

instantaneous frequency function and the pulse envelope are represented

by linear piecewise continuous functions.

Consider a pulse, s(t), with arbitrary amplitude modulation, v(t),

and arbitrary frequency modulation, m(t), then:

(IV-l) V~t =vtCos [~j t ;; j

where, as in Section II,

,p.

and

(IV-2b) X()i .' ,,nt

If V(f) is the Fourier transform of v(t), the amplitude spectrum S(f)
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of the pulse s(t) in equation (IV-l) is given by the convolution of

V(f) and the Fourier transform of coS(t):

(IV-3) 3(f VM) *d =~srA VW f) P

where P(f) is given by equation (11-3). Using the approach of equation

(11-5), the spectrum, S(f), can be represented by the sum of the spectra

of elemental cells:

where touTpo and tn -Tpo+ . The spectrum, Z(f), of any individual

element cell is given by

(IV-5)z(f) m jad

where To is the start time of the elemental cell and t is the pulse

duration of the elemental cell. Section II treated the special case

of equation (IV-5) when v(t) is equal to one across the elemental cell

and developed equations (11-6 and 11-13) for the characteristic elemental

cell spectra for constant and chirp frequency cells. If the pulse

envelope, v(t), is not equal to one, but rather some constant across

the elemental cell, then equations (11-6 and 11-13) still apply and

need only be modified by a scale factor. If, on the other hand, v(t)

is not constant across the cell, equations (11-6 and 11-13) must be

modified to account for this non-constant behavior.

Consider the instantaneous frequency function, fi(t), and amplitude
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modulation, v(t), depicted in Figure 17. In the figure, an elemental

cell extending from To to To + C is generated by linearly approximating

fi(t) and v(t) across the elemental cell. The linearized instantaneous

frequency function, fi(t), has been discussed in great detail in Section

II. The linearized amplitude modulation, 1(t), is given by:

(IV-6) vo A +h( -) TO' #

where "A" is the initial cell amplitude and "h" is tbaslope of the

linearized envelope. This allows the element cell spectrum, Z(f), of

equation (IV-5) to be approximated by:

(IV-7) Z0 -r

The first integral is simply the problem addressed in Section II

modified by a multiplicative constant. The second integral adds a

degree of generality to the elemental cell model by accounting for the

fact that the amplitude modulation is not constant. In consonance with

the model development of Section II, there are two special cases of

equation (IV-7) that merit attention:

(1) h#o and the instantaneous frequency function is constant

across the cell; ane

(2) h~o and the instantaneous frequency function is linear

across the cell.

In the first case, the approximated instantaneous phase function, ;(t)
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is:

for ti 4 . By applying this function to equation (IV-7),

straightforward integration yields the following expression for the

characteristic spectrum of an elemental cell with linear amplitude

modulation and a constant carrier frequency:

(IV-9) .-

_j4A1 4 j

In the generalized elemental cell model, this expression is the analog

of equation (11-6).

In addressing the special ase of equation (IV-7) in which both

the elemental cell amplitude and frequency are linearly swept, an

expression analogous to equation (11-13) will be developed. In this

case, the approximated instantaneous phase function, 0(t), is given by

equation (II-10b). The first integral of equation (IV-7) is simply a

constant, A, times an integral evaluated in Section (II-A); namely,

equation (11-13). Using Eulers equations, the second integral of

equation (IV-7) can be arranged as the sum of two integrals; the first
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is a function of (fl-f) while the second is a function of (fl+f).

Designating the first of these integrals by Ii(f) and the second by

12 (f), l1(f) can be written:

WTO)~ 7.) T"To

By completing the square of the integrand's exponential argument, and

defining z, as in equation (11-12);A3, as in equation (11-14); and

ZIL and ZlH as in equation (II-15), If(f) can be written:

he$ IL i

(Iv-11) I,' (f lei

The first integral is directly integrable. The second is of the Fresnel

form. Defining the Fresnel integrals, C(x) and S(x), as in equation

(11-17), Il(f) can be written as:

A similiar analysis can be applied to the integral 12(f).

For simplicity, define the evaluated Fresnel integrals as:

(IV-13a) Fz C)C( (EL)1rj0iR S0v.41
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With this definition and letting the limits of integration be defined

as in equation (11-15) and letting/l and/52 be defined as in equation

(11-14), equation (IV-7) can be written in integrated form as:

(IV-1.4) 13 AIyJ ZL ZN

This expression is the analog of equation (11-13) for the case where

arbitrary amplitude modulation is considered. This is apparent in the

terms that have been added that are a function of the envelope's slope.

Thus any pulse with an arbitrary amplitude and frequency modulation

can be modeled by expressing the pulse envelope and the instantaneous

frequency as linear piecewise continuous functions. These linearized

function are then segmented into a series of successive elemental cells

such that each cell can be classified as one of the following:

(1) linear frequency sweep; linear envelope

(2) linear frequency sweep; constant envelope

(3) constant frequency sweep; linear envelope

(4) constant frequency sweep; constant envelope

Associated with each of the four classes of elemental cells is a

characteristic spectrum, so that once the elemental cell's class has
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been determined, its spectrum can be generated directly from cell

parameters. Finally, the total pulse spectrum is obtained by summing

over the spectra of all elemental cells.

The generalized elemental cell model is flexible and easy to use.

There is no requirement that the elemental cells be of uniform length.

In fact, judicious construction of the element cells allows for the

possibility of dynamic sampling. That is smaller elemental cells

(higher sampling rates) may be used during transient portions of

the pulse while larger cells (lower sampling rates) may be used during

more static portions of the pulse. Additionally frequency resolution

is not a function of the sampling rate and the number of samples used.

Arbitrary frequency resolution can be achieved since the model uses

an analytic approach to spectrum generation. For the same reason, an

arbitrary number of spectrum frequency component can be generated.

A program listing which implements the generalized elemental cell

model is provided in Appendix A.

B. ILLUSTRATION OF THE GENERALIZED ELEMENTAL CELL MODEL

To illustrate the application of the generalized model, consider as

in Section (II-B) the sinusoidally frequency modulated pulse but allow

the pulse envelope to also be sinusoidally shaped as shown in Figure 18.

The spectrum of this pulse is discussed in Appendix B. Let the pulse be

such that the carrier frequency, fc is 30 MHz; the frequency modulating

frequency, fm, is 200 kHz; the frequency modulation index, kf, is one;

the amplitude modulating frequency is 100 kHz; and the pulse duration
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is five microseconds. (Assume, again, that a 25 kHz resolution is

desired and that the primary interest is in the first three upper

and lower spectral sidelobes.)

Figure 18 demonstrates the generation of elemental cells for this

pulse. Two cases are considered. In case I, two cells are used to

generate the spectrum; while, in case II, eight cells are used. Figure

19 displays the amplitude spectra generated by these two cases. The

solid line represents the exact spectrum, the development of which is

addressed in Appendix B. The general results are not unlike those

obtained for the unit pulse in Section (I-B). In the following section

it will be shown that the convergence of the generalized model parallels

that of the unit pulse model being inversely related to the square of the

number of elemental cells used in generating the spectrum.

69

r

~:. .- q



bii

4JG1 K. r- 4

C14 00 0o

I P-4

.41

Ow
to

44

41

P-19

0.

u F-4

700



V. ERROR ANALYSIS (GENERALIZED MODEL)

A. ERROR BOUND

The methodology used in this error analysis parallels that used

in the development of equation (111-37) in Section III. The local

error bound associated with the kth elemental cell is generated and

then applied across the pulse to develop a maximum error bound on a

global basis.

For a pulse with arbitrary amplitude and frequency modulation, the

difference between the actual pulse waveform, s(t), and its approximated

form, 2(t) is given by:

(V-l) S10410 ) v)coSEW] -0(e1osWtO ]

where 9t) and 0(t) represent the exact and approximated instantaneous

phase functions respectively and V(t) and '(t) represent the exact and

approximated pulse envelopes respectively. The pulse envelope expressions

are related by:

(V-2) re -- 'V ) + V. (t

where V(t) is the error that results from linearly approximating the

amplitude modulation. Making use of this relationship, the absolute
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pulse error in the time domain can be bounded from above such that:

(V-3) I-sit) J - )Qk)/j4cosL#4'] -eo5[$it)ij 4. IveloIjeosf[4'l)

In the first term, the results of Section (1II-A) can be used to bound

the absolute difference of cosines by the absolute difference of their

arguments. Equations (111-15) thru (111-18) are germane. In the

second term, use can be made of the fact that /'e$(/U, so that:

(V-4) [s1*) -ft)ol 't~ ()#'tI#~(9

Since the intent is to extrapolate a local error to a global error,

consider the kth elemental cell starting at Tok and of duration,tc. If

- is the instantaneous absolute phase error associated with

the kth cell and Vek(t) is the error associated with the amplitude

modulation in the kth cell, the absolute pulse error associated with

the kth cell, 1I(t)-2(t) k, can be written using equation (IV-6)

where Ak is the initial pulse envelope amplitude at Tok and h. is the

slope of the pulse envelope across the cell. In a manner analogous to

equation (111-21), the local spectrum error associated with the kth

cell can be bound as follows:

(V-6) 15(f) -SO)J i7A+ 5 -. 1~ i.aI 4.&(
If it is assumed that the amplitude modulation function, v(t),
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is at least twice differentiable, then in the kth elemental cell, the

linear approximation, I(t), results in error, *Wt), given by:

where Toki \* Tok+?v and TokL. t! Tok+fk. By bounding the second

derivative of the modulation function over the kth elemental cell,

(V-8) IVE(0.O

where Nk - max jV'( I}, Tok- %' I tk . Applying this bound to

equation (V-6), using the expression for the absolute instantaneous

phase error developed in equation (111-34), and replacing the variable

t-Tok by w the spectrum error associated with the kth elemental cell

can be bounded by:

0o

This expression can be integrated to yield the local bound on the spectrum

error of the kth cell,

(V-10) ISM ( .)-~f)IKlx'~ ~ .hJ
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Summing the local error bounds over all cells provides the global spectrum

error bound:

/.2 hI'

This is a very general bound on the spectrum error, applicable to ele-

mental cells of uniform and nonuniform length, and, as such, is unwieldy.

To identify the characteristics of the convergence process, some simpli-

fications can be made resulting in increased clarity at the cost of

broadening the bound. The expression (Ak - (hI' 1-/2)) is the pulse

amplitude at the midpoint of the kth cell. The expression (Ak+O.7h k)

is the pulse amplitude at a point seven tenths the width of the kth cell.

Both of these expressions can be upper bounded by the maximum pulse

amplitude, V. Additionally, the second derivatives of the modulating

functions can be bounded by their maximum value over the entire pulse, such

that:

(V-12a) M z ,r g: ,1, 3, ..

(V-12b) /V: ,,,,x(A 1MRV3," '

As a final simplification, let the elemental cells be of equal length,

where the total pulse width is , . With these considerations,
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equation (V-11) reduces to:

Realizing that 2 (k-i) - n2-n, the Ppectral error bound becomes:

Thus the generalized elemental cell model converges inversely as the

square of the number of cells used.

B. EMPIRICAL ASSESSMNT

In order to assess the peri e ace of the generalized element

cell model in the light of the theoretical error bounds developed,

consider a pulse with sinusoidal amplitude and frequency modulation

as in Section (IV-B). The exact spectrum of this pulse is known

(Appendix B). Using the techniques of Section IV, the pulse can be

modeled using n elemental cells where n - 1,2,3,.... to produce

approximate spectra. For each choice of n, the approximate and exact

spectrum can be compared to determine the maximum calculated spectrum

error experienced using the elemental cell model.

Since the instantaneous frequency function, fi(t) and the amplitude

modulation function, v(t), are known analytically (Appendix B), equations

(V-11) and (V-14) can be evaluated to generate maxim= theoretical error
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bounds as a function of the number of elemental cells, n, used in

the modeling process. Thus a set of three curves can be generated:

(1) The maximum theoretical spectrum error bound as a

function of the number of elemental cellswith modulation

variables bounded across the pulse (equation V-14)

(2) The maximum theoretical spectrum error bound as a

function of the number of elemental cells with

modulation variables bounded across elemental cells

(equation V-11)

(3) The maximum calculated spectrum error as a function of

the number of elemental cells.

The three curves are presented in Figure 20. The solid curve

(equation V-14) and the dashed curve (equation V-11) display the

quantitative tightening of the error bound achieve through the

increased complexity of equation (V-lI). The dotted curve represents

the calculated maximum error and is well within the established

theoretical bounds. In general, all curves follow the characteristic

one over n-squared convergence.
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VI. EXTRAPOLATION

A. DEVELOPMENT

The concept of extrapolation to the limit (Richardson/Romberg

extrapolation) is attractive from the computational point of view

since a relatively simplistic calculation uses two inexact solutions

to generate a more exact solution. The technique involves some know-

ledge of the order of the error in the inexact solutions and some

associated assumptions. The desire is to apply this type of technique

to the elemental cell approach.

Consider the case of the unit amplitude pulse with arbitrary

frequency modulation and elemental cells of uniform length. The

maximum theoretical error bound for this case has been presented as:

(VI-1) /P- il 0 4

where again i is the pulsewidth, n is the number of elemental cells and

M is the maximum value of the second derivative of the instantaneous

frequency function over the pulse. Thus the approximate spectrum approaches

the exact spectrum roughly as the inverse of the number of cells squared.

Let IP1l be the approximate spectrum produced when nI cells are

used to model a given pulse, then

A A'

(4,) 
/7d
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The inequality can be remved by writing:

or by removing the absolute value signs:

(VI-5) Po -/I'()j Ve, o E

where 0 and 4 are unknown and are, in general, functions of n and

frequency.

Similarly letjzl be the approximate spectrum produced when n2 cells

are used, then

(VI-6) /p Iu, AI Zp() Ova.' 0

Equations (VI-5) and (VI-6) are actually two equations in three unknowns:

P, all and a. . To attach some physical significance to o and 6IL

they can be thought as of the normalized errors for the two cases (nI

and U2) discussed above (normalized by the maximum error bound for a

specified number of cells). If these normalized errors (or errors

normalized to the maximum bound) are assumed to be equal, equations (VI-5)

and (VI-6) form two equations in two unknowns. The equating of these two

normalized errors in fact is an implicit assumption that for any given

frequency component for n1 and n2 the convergence of the approximated

spectrum to the exact spectrum parallels the convergence profile established
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by the maximum theoretical error bound. In consonance with the

discussions of Section (I1-C), it is expected that the validity of

this assumption is increased as n becomes larger and larger. Solving

then the set of simultaneous equations for IPlyields:

(vI-7) ______,_1, __

MV-8) IPI V1.'  -+-2 1 - "' ' ' 51

As is the case with extrapolation to the limit techniques, JPj in equation

(VI-8) is not truly an exact value since in reality oi is not equal to

B. ILLUSTRATION AND ASSESSMENT

In this section two detailed illustrations of the extrapolation

technique are presented along with a detailed analysis of the technique

performance. For the purposes of demonstration, a unit pulse with

sinusoidal frequency modulation (see Section II-B) is modeled.

Consider the case in which four (4) and then eight (8) elemental

cells are used to model the pulse. The two approximated spectra that

result using the techniques of Section II are shown in figures 21 and

22. If the results of these two modeling efforts (nl-4;n 2-8) are applied

to equation (VI-8), the extrapolated spectrum shown in figure 23 is

80



Spectrum +
-AmplitudellxlO

-True Amplitude Spectrum
4 Cell Model

1.0

0.10

2942. 123.
Frqec

[Mz

Figue 21 AmpltudSpetu o ntPlewt

0.uodlFrqec odlto n

AprxmtdSetu sn or4 el

81



Spectrum +
Amplitude[xlO 61

- True Amplitude Spectrum
8 Cell Model

1.

0.1-

29.4 29.8 30.2 30.6
Frequency

[MHz]

Figure 22 - Amplitude Spectrum for a Unit Pulse with

Sinusoidal Frequency Modulation and

Approximated Spectrum Using Eight(8) Cells
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produced. While a net improvement in the extrapolated spectrum can be

seen in the first lower sidelobe, certain null values such as the

amplitude associated with f-30.12 MHz show deterioration. To gain

a better insight into the extrapolation technique performance, figure

24 illustrates the amplitude spectrum error associated with the four

and eight cell models and that associated with the extrapolated Lpectrum.

In general, across the central region of the spectrum (f=29.4 MHz to

f=30.6 MHz), the error associated with the eight cell model is a factor

of four less than the corresponding error associated with the four cell

model. Additionally, in this central region, as the number of cells

is increased from four to eight, the convergence to the exact spectrum

is essentially at a uniform rate (i.e., the normalized errors axt and

Vt are approximately equal). The error associated with the extrapolated

spectrum in this region lacks the uniformity seen in the two modeled

spectra, but in general provides a reduction in the spectrum error by

about a factor of four over the eight elemental cell model. On either

side of this central region, the performance of the extrapolation technique

is relatively poor. In the range from 29.0 MHz to 29.4 MHz, the inferior

performance is the result of the fact that the eight cell and four cell

models do not converge to the true spectrum at a uniform rate. In the

range from 30.6 MHz to 31.0 MHz the same problem exists; however, its

cause is more graphically evident in the misalignment of the spectrum

error sidelobes of the four cell and eight cell models.

Before assessing the performance of the extrapolation technique

further, consider a second example in which eight cells (nl) and

sixteen cells (n2) are used to generate an extrapolated spectrum. The

approximated spectra generated by the eight cell and the sixteen cell
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models appear in figures 22 and 25 respectively. The resultant extra-

polated spectrum is not shown in a presentation comparable to figure

23 since the difference between the extrapolated spectrum and that

produced by the sixteen cell model is basically lost in the resolution

of the graphical presentation. Instead, the spectrum errors associated

with an eight cell model, a sixteen cell model, and the extrapolated

spectrum (n1=8;n 2=16) are shown in figure 26. Generally, across the

spectrum, the convergence of the sixteen cell model parallels that of

the eight cell model and exhibits the characteristic (1/n2) convergence.

The extrapolated spectrum parallels the convergence of the elemental

cell models and further reduces the spectrum error by about a factor of

six or seven. In this second example, the use of an increased number of

elemental cells has reduced or eliminated some of the problems addressed

in the previous example (figure 24). In the frequency range 30.6 MHz to

31.0 MHz, the alignment of the spectrum error sidelobes for the eight

and the sixteen cell models has been greatly improved resulting in

significantly more accurate extrapolated spectrum values. In the

frequency range below 29.4 MHz, convergence of the two elemental cell

models is much more consistent and anomalous results occur only between

29 MHz and 29.2 MHz.

In those cases when the assumption of Section Vt-A (i.e.VC % aq )

holds, the extrapolated spectrum produced by using equation (VI-8) provides

a substantial increase in the accuracy of the approximated spectrum. In

the case of the first example (nl-4;n2-8), this is seen in the factor of

four reduction in the spectrum error; in the second example (nl-8;n2-16),

a factor of six reduction in the spectrum error. The key point is that

these significant enhancements in spectrum accuracy are achieved by
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virtue of a trivial calculation. To form a basis for comparison and to

illustrate the power of these techniques, figure 27 presents an overlay

of the extrapolated spectrum error (nl-8;n2-16) discussed above and the

error associated with generating the spectrum with a 4K Discrete Fourier

Transform (DFT). While the nature of the error is different, there are

few cases in which the DFT spectrum provides better accuracy.

The potential power of the extrapolation technique is evident from

the discussions above. The existence of anomalies addressed in discussing

figures 24 and 26, however, needs further examination. Returning to the

first example of this section (nl=4;n2=8), of the 100 frequency components

between 29 MHz and 31 MHz examined, there are 32 cases in which the

extrapolated spectrum values are less accurate than the corresponding

spectrum values generated using the eight cell model. These 32 cases

fall into three distinct categories which shall be referred to as Type(l),

Type(2), and Type(3) errors:

(a) Type(l) Error. In six instances the spectrum values

generated using the eight cell model are less accurate

than the corresponding values generated using the four

cell model. Obviously, if IP21 is less exact than IP1I,

the extrapolated value will, by equation (VI-8), be less

exact than IP21.

(b) Type(2) Error. In 18 instances, the spectrum errors

associated with P 11 and IP 21 are oppositely signed. In

the extrapolation process, this results in the extrapolated

value being driven away from vice towards the true spectrum

value. This type of error results from the nature of the
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spectrum convergence which will be discussed below.

(c) Type(3) Error. In eight instances, a poor extrapolated

value results because of the difference in the rate of

convergence of the two approximated spectra to the true

spectrum. Specifically, the value of IP1 is considerably

different than IPI, while the value of JPj is a much

better approximation to IPI . While %PI and I P21 are not

oppositely signed, the relatively large difference between

the two causes, in essence, an "over-extrapolation" to a

less exact value.

Figure 28 presents a graphic illustration of how the three error types

are actually generated.

To gain an insight into the behavior of the three types of error

identified, a large number of cases are examined for various values

of nI and n2. As a general comment, it can be stated that the char-

acteristics identified in the two examples presented at the beginning of

this section hold. When , 0(t, the extrapolation technique results in

a significant improvement in the accuracy of the approximated spectrum

and when problems occur or anomalies exist, they are generally limited

to the higher ordered sidelobes or local spectrum minima.

Table 1 is a matrix of the error types encountered for various

values of n, and n2 in exercising the extrapolation technique against

the unit pulse with sinusoidal frequency modulation. Each block of the

matrix is associated with a specific value of n, and n2 and is divided

into quadrants which represent the number of Type(l) errors, Type(2)

errors and Type(3) errors as well as the total number of errors encountered.

The legend in the figure provides a key for identifying the various error
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types. For example, in the case discussed above (nl=4;n2 f8), the appro-

priate block of the matrix identifies six Type(l) errors, 18 Type(2)

errors, 8 Type(3) errors, and 32 otal errors. Examination of the matrix

yields some insights into the different types of errors and their behav-

ioral characteristics. By examining the Type(l) errors, it can be seen

that for a given nl, as n2 increases, the number of Type(l) errors goes

to zero. This occurs since as n2 increases all values of P2 (f) will

ultimately be more accurate than the corresponding value of Pl(f) , thus

eliminating the source of the Type(l) error. It should be noted, however,

that as n2 increases and the Type(l) errors diminish that they may reappear

as Type(2) or Type(3) errors. It is evident from the matrix that the nmnber

of Type(2) errors is determined by the selection of nI . To some extent

this is also true for Type(3) errors, but there also tends to be a

slight decrease in the number of Type(3) errors as n2 increases for a

fixed nI . This effect results from the fact that the extrapolated spectrum

is the weighted sum of the two approximate spectra, IP1 (f) l and IP2 (f)),

with the weights being determined by the selection of n] and n2 . As n2

increases, the weight associated with fP2 (f)1 [the more exact of the two

approximate spectra] increases and tends to dominate the weighted sum,

diminishing the effect of 1Pl(f)I on the extrapolation process. In

actual applications, the relationship between nj and n2 is critically

important. If these two values are too close together, the weighted sum

is biased towards IPl(f), typically the less accurate of the two appro-

ximate spectra. On the other hand, if n2 is very much larger than nl,

jP2(f)j may be so heavily weighted that the feasibility of using an

extrapolation approach becomes questionable. Figure 29 provides a quan-

titative insight into this problem by presenting the relative weighting
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of the spectra IP(f)J and JP2(f)j as a function of the ratio of n2 to

ni.

The most important outcome of examining the matrix in Table 1 is

the realization that to a large extent the successful application of

the extrapolation technique rests very heavily on the proper selection

of a value for nI . The selection of this value and the ultimate effect

that it has on the extrapolation process is driven by the manner in

which the approximate spectra converge to the true spectrum as the

number of elemental cells is varied. To gain an insight into the nature

of this convergence problem, figures 30 thru 33 present the convergence

profiles of various frequency components. The relative spectrum amplitude

[IPn(f) /IP(f)l] is plotted as a function of n, the number of elemental

cells used to generate the approximate spectrum, )Pn(f)j , for specific

frequency components. Figure 30 represents a well-behaved frequency

component that converges nicely to the exact spectrum value. Figures

31 thru 33, however, display convergence profiles that may cause problems

in applying the extrapolation technique. Figure 31 illustrates how a

Type(l) error could occur with nl-4 and n2-8. In figure 32, it is easy

to see how a Type(2) error could be generated if n, were less than eight.

Figure 33 presente a case in which a Type(3) error could result if n,

were four and n2 were eight. In general all frequency components converge

nicely to the exact spectrum value if the number of elemental cells is

large enough. The problem in dealing with the extrapolation technique

is to select nI and n2 such that the initial transients in the convergence

profiles do not impact on the extrapolation technique. Figures 30 thru

33 represent three different types of convergence profilesencountered in

examining the unit pulse with sinusoidal frequency modulation. In
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consonance with the discussions of the two examples presented at the

beginning of this section, the convergence profile displayed in Figure

30 is representative of those frequency components within the mainlobe

and major sidelobes. As frequency components farther above or below

the mainlobe are examined, the convergence profile becomes more complex.

The extrapolation technique has been observed to provide significant

increases in the accuracy of spectrum estimates at a minimal cost in

computation. The use of this technique, however, requires a judicious

selection of n1 .
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VII. APPLICATION

The model developed in the previous sections can be a useful tool in

the development and implementation of signal classification algorithms

based on frequency domain analysis. The modulation that is present on

pulsed signals may well be a useful discriminant in the classification

process. This being the case the treatment of this discriminant in the

frequency domain has the potential of being less susceptible to noise

since the transformation is a smoothing process.

To address the discriminant selection in the frequency domain, con-

sider the chirp radar pulse. As the. chirp rate is increased or decreased

for a given pulse duration, certain characteristic effects occur: (1)

the spectrum is shifted in proportion to the chirp rate and (2) the side-

lobe amplitudes change relative to the mainlobe as a function of chirp

rate. Knowledge of the form of the spectrum provides an insight into the

nature of the chirp pulse. In more general cases in which the frequency

modulation may be more complex, does knowledge of the spectrum form pro-

vide useful information to the classification process?

To examine this question, let the discriminants that define the

spectrum form do so in terms of the sidelobe structure relative to the

mainlobe. This can be easily accomplished by choosing two types of

discriminants: (1) the relative amplitudes of the sidelobe local maxima

(relative to the maximum spectrum amplitude) and (2) the frequency dif-

ferences between the sidelobe maxima and the center frequency of the

mainlobe. The selection of these parameters establish the form of the

spectrum.

To actually assess the feasibility of employing sidelobe structure

in the classification process requires that the impact of the modulation
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on the spectrum be understood. To gain an insight into this effect, con-

sider a unit pulse with an instantaneous frequency function as shown in

figure 34. NoW that the initial portion of the pulse (0.2,4.s) is subject

to a symmetrical triangular modulation of magnitude JFM. To investigate

the impact of the modulation on the frequency domain, the values of the

two discriminants (relative amplitude and relative frequency) are deter-

mined for the first three upper and lower sidelobes for a variety of

pulses as AFM varies from zero to 5 MHz. Figure 35 displays the relative

amplitudes of the upper sidelobe maxima as a function of 4FM. For exam-

ple, the first sidelobe has a relative maxima of 0.3 when the magnitude

of the triangular modulation is AFM - 2.0 MHz. All three sidelobe maxima

have the potential of functioning as discriminants since they are single

valued and monotonically increasing. For example, the relative amplitude

of the sidelobe for AFM - 2.0 MHz is easily distinguished from that for

£FM - 2.5 MHz for all three sidelobes. Figure 36 is a similar presenta-

tion for the lower sidelobe maxima. For a pulse with initial triangular

modulation, the lower sidelobes are inferior to the upper sidelobes as

discriminants. This is due to the fact that the relative amplitudes

extend over a much more confined range of values and that, in the case of

the second sidelobe, points exist on the curve that are multi-valued.

From figure 36 it appears that the first sidelobe disappears when AFM -

2.5 MHz. In fact, as the modulation magnitude increases past 2.0 MHz,

the first and second sidelobes merge to form one and are arbitrarily

associated with the second sidelobe. The inferior performance of the

lower sidelobes in this example should not be cause to disregard them as

discriminants, since by changing the polarity and location of the trian-

gular modulation the relative merits of the upper and lower sidelobes
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Figure 35 -Upper Sidelobe Relative Amplitude vs.

Frequency Modulation
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0.4 t (c) Third Sidelobe

0.3-

0.2. (b)
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Figure 36 -Lower Sidelobe Relative Amplitude vs.

Frequency Modulation
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would be reversed. The relative amplitude of the sidelobe maxima display

the characteristics desired of a discriminant for classification pur-

poses.

Figure 37 displays the relative frequency of the upper sidelobe

maxima as a function of AFM. In order to accomodate all three sidelobe

profiles on the same scale, fo is selected as the normalization factor.

It represents the nominal frequency at which the sidelobe maxima would

occur for the case of a constant frequency pulse. If fis the pulse

duration, the sin(x)/x spectrum will have local maxima at the following

approximate spacings from the center of the mainlobe: +3/2f, +5/2f, +7/2Z,
th

*.. so that fo, the location of the n sidelobe peak relative to

the center frequency, is +(n + 1/2)/t. Thus as each of the three side-

lobes is considered, the value of fo changes. The range of values over

which the relative frequencies extend is fairly small especially for 4FM

less than 2.0 MHz. Figure 38 presents the relative frequency of the

lower sidelobe maxima. The first sidelobe provides no useful informa-

tion. The second and third sidelobes however are quite robust due in

large part to the fact that the first and second sidelobes merge at about

aFM - 2.0 MHz. There appears some potential for relative frequency as a

discriminant but its power does not appear comparable to that of relative

amplitude.

To gain another feel for discriminant power consider a pulse as in

figure 34 but with a triangular modulation that is not symetrical. Such

an instantaneous frequency profile is shown in figure 39. Again, the

relative amplitude and relative frequency of the local sidelobe maxima

can be examined. Figure 40 displays the relative amplitude for the upper

sidelobe maxima. The results from figure 35 (symmetrical modulation) are
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Relative Frequency of
Upper Sidelobe Maxima

f0+400 kHz_,
f0 (a) First Sidelobe

(b) Second Sidelobe
(c) Third Sidelobe

fo
where n is the number of the sidelobe
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(b

f0 " '" " Hz)

f 0- 200 kHz:-
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Figure 37 -Upper Sidelobe Relative Frequency vs.

Frequency Modulation
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Relative Frequency of
Lower Sidelobe Maxima

(a) First Sidelobe
f 0+400 kHz (b) Second Sidelobe

0(c) Third Sidelobe

where n is the number of the sidelobe

fo+200 kHz-

0O 2.0 3.0 4.0 AFM
(M4Ez)

Figure 38 -Lower Sidelobe Relative Frequency vs. Frequency

Modulation
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Figure 39 -Instantaneous Frequency Function with
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Figure 40 Upper Sidelobe Relative Amplitude vs.

Frequency Modulation
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plotted as solid lines for comparison. These discriminants appear to

work well in distinguishing between these similar pulses especially for

AFM greater than 2.5 MHz. A similar presentation for the lower sidelobe

relative amplitudes appears in figure 41. The performance of the lower

sidelobe discriminants parallels that of the upper sidelobes for these

two similar pulses. Figures 42 and 43 present the relative frequency of

the upper and lower sidelobes, respectively, as a function of LFM.

Except for large values of aFM in the case of the second and third lower

sidelobes, the overall performance of relative frequency in distin-

guishing between these two signals is marginal.

In summary, frequency domain techniques are reasonable for pulse

classification purposes. The use of sidelobe structure in the form of

relative amplitude and relative frequency as a classification discrimi-

nant is a valid approach to the problem with the former possessing the

greater potential for success.

This type of analysis lends itself very well to the elemental cell

model. Waveforms are easily constructed and implemented and local maxima

can be readily identified to arbitrary precision.
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Figure 41 - Lower Sidelobe Relative Amplitude vs.

Frequency Modulation
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Relative Frequency of
Upper Sidelobe Maxima

-Symmetrical Modulation

f 0+400 k~z- - Asymmetrical Modulation

(a) First Sidelobe
(b) Second Sidelobe
(c) Third Sidelobe

f W
0where ni is the numtber of the sidelobe
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Figure 42 -Upper Sidelobe Relative Frequency vs.

Frequency Modulation
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Symmetrical Modulation

f 0+400 kMz - - - Asymmetrical Modulation

(a) First Sidelobe
(b) Second Sidelobe
(c Third Sidelobe

f W0+
0where 11 is the number of the sidelobe
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Figure 43 -Lower Sidelobe Relative Frequency vs.

Frequency Modulation
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A flexible, easy to use tool for modeling the spectra of pulse

signals with arbitrary amplitude and frequency modulation has been

developed along with the appropriate error bounds. When properly

-implemented, accuracy comparable to that of an FFT is achievable.

The technique developed is not universally superior to the PFT;

efficiency of one over the other is a function of specific applications.

Computational spded can be an advantage in the elemental cell method

in those cases where large FFT's are required relative to the product

of the number of elemental cells (n) and the number of frequency

components required (m).

The feasibility of using frequency domain discriminants in the

signal classification process has been demonstrated.

There are a number of areas for further investigation and refinement.

Appendix D addresses the comparison of the FFT and the elemental cell

technique in terms of computational speed. Since most of the studies

during this effort were focused on precision vice speed and since the

execution time studies were conducted without modification to the basic

subroutines (Appendix A), significant improvements can be made in the

efficiency of the elemental cell subroutines. Several specific areas

for improvement are:

(1) the conversion of double precision based routines to

single precision. Preliminary investigation in this area has indicated

that this can be accomplished with little degradation in model

performance.
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(2) the elimination of "left-hand" spectrum computations. The

existing subroutines calculate both the "left-hand" and "right-hand"

spectrum contributions to each frequency component. Under the proper

conditions, the former can be eliminated without performance degradation.

(3) the streamlining of certain aspects of the overall computation.

For example, the technique of James (5), discussed in Appendix C, for

Fresnel integral evaluation should be assessed for use in place of the

existing technique.

The time required to generate a spectrum using the elemental cell

technique is a function of the number of cells used (n) and the number of

frequency components required (m). The time required increases as the

product of m and n. Since the calculation of each elemental cell spectra

is independent of all other elemental cell spectra, individual elemental

cell spectra can be calculated in parallel and then coherently sumed.

Investigation of the implementation of parallel processing arrays should

be initiated. Under such an implementation, the computation time

required for spectrum generation would be proportional to m vice m x n.

While the feasibility of using spectrum discriminants in signal

classification has been established, further examination is required:

(1) the approach should be assessed against a noisy environment;

(2) the approach should be compared to other techniques on simulated

and real data.

Further work might well be done in applying the elemental cell

concept with different basis functions that lend themselves to certain

classes of signals.
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APPENDIX B

SPECTRA OF SINUSOIDALLY MIDULATED PULSES

Consider a pulse, s(t), which may be both amplitude and frequency

modulated so that over the duration of the pulse:

(B-1) VW Cos L (K4

where v(t) represents the amplitude modulation and 96(t), the instanta-

neous phase, accounts for the frequency modulation. An expression for

the frequency spectra of two specific cases of equation (B-i) is

developed. In CASE A, the pulse envelope is simply represented by a

unit pulse (i.e., v(t)-l over the: pulse width). In CASE B, the pulse

envelope is allowed to vary sinusoidally. In both CASES A and B, however,

the carrier frequency experiences a sinusoidal frequency modulation.

Consider a sinusoidal instantaneous frequency function as shown in

figure (B-1) with fc being the carrier frequency; f., the modulating

frequency and kf, the modulation index. The instantaneous frequency

function, fi(t), is represented by:

(B-2)Co

The instantaneous phr.se can then be written as:
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Figure B-1 Instantaneous Frequency of a Sinusoidally

Modulated Pulse

v (t)
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Figure B-2 -Envelope of a Sinusoidally Shaped Pulse
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where 9(o) is the initiai carrier phase at time zero. For the purposes

of this analysis, the interest is in the cosine of the phase function

The right hand side of equation (B-4) can be expanded as an infinite

series of sinusoidal functions weighted by Bessel functions (6).

f (t, 4 tCoS[, iCt +
C(,"os [(C+ ,)t 4 0,.31

This expression represents the sinusoidal FM associated with the pulse

for which spectra are to be generated for CASES A and B below.

CASE A: SINUSOIDAL FM

The frequency spectrum for the unit pulse of duratiorjdth sinusoidal

FM can be expressed as:

(B-6) Z(60) j [
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Using the results of equation (B-5) and integrating, produces:

(BC L (0) (W .W)i
-7) f] cu' -#)W

.2*O

This frequency representation is essentially the convolution of the

spectrum of a sinusoidally modulated carrier with the spectrum of a

unit pulse. That is a sine(x)/x spectrum convolved with an infinite

sequence of delta functions weighted by the Bessel functions, Ji(kf).

Thus the spectrum is a function of the modulation index kf. If kf is

small, the first few delta functions account for most of the power in

the carrier(6). For example, if kf-l, then J0, Jl, and J2 account for

98% of the signal power. In using equation (B-7) to generate a spectrum

for CASE A, the first twenty terms of the series are evaluated. A program

listing which evaluates equation (B-7) appears at the rear of the Appendix

and is titled "SUBROUTINE SINE".
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B. CASE B: SINUSOIDAL AM AND FM

Consider now CASE B in which the amplitude modulation is allowed to

assume a sinusoidal form as shown in figure B-2. The frequency

modulation is unchanged and generates the cos O(t) term listed in

equation (B-5). Allow the amplitude modulation to be expressed as:

(A-8) Vi(t) i rdt

where f - 1/2f . Thus the pulse waveform equation can now be written:a

(B-9) $~~sgw ijcsW )

With the aid of equation kB-4) and trigonometric identities, the pulse

equation can oe expressed as:

-51AI' -W 944a)

+~(,)t,#[/ o i,,,, t

By taking the Fourier transform of the pulse, the frequency spectrum
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for CASE B can be expressed as:

(B- i) 1,' _ _ ___ .,.. .&I.< ..4d ,

)'fC - lI ( D~ 141f wc IWW*C') "

(tit 9 ,$-,) ..* I.

Again as with CASE A, the first twenty terms of the series are evaluated

in establishing a reference. A program listing for CASE B appears at

the rear of the appendix and is titled "SUBROUTINE ASINE".

133

. . .. . . .



I--

z C. f Q

40 X: 3M

aL . W.

I . - & . 9-

1- -1 WUc

ZL CC>-*

=.) ww *i - n

** 9-) ) . * (4* 0:1j -jc

0-I mI a - I- 3 u- z U-
-4 U.. I- . 3 I-

LU>. ~ 0 VC -a0. %T1 C:.9.

znz L W 1?-O 3 I 0- .
CL fr 0.14 )vU. .

*D* XZ 9.- CL *O

WV)4/ * OAJ.-4o z x.W
CD UcQ. LL9.C oI C-

*M/* LU.. ix 0:4.4 V .. . wcozt
*4 * Xn-. of W 0.-NC ) OX C.4

O 4.-Il-P 09L70 x a.

40.Z 04LP, CL 7 ;x Wu '.-- 1-0

L1" avW v.- Vi" z.

*0* C2ic~ * u.. &na4~ tJ > M-
*019 Lr U-.. r4 j3 Ix. wZL I S 93

*04 X 0*-0. 40 .. LU 0:z

*U L9 -- NO4 . 00.3: <C =. V i
1*9 0: X.q : 0 wo &Vlo 1za a

I. C.40 W W" "Z09-/

IWl,. 0U )( - . V C" L6 ZL( %

M0: W00:U wou &/ W0:q O )v . 3> u
0:4 0:..&%%UIw N)U +:. OWL LL, l- 333MU o

'"L -A . .0 L M CL-0 DL Vw" I it 61-

x x I.'0C IL:Z 0000C 0-b 0:l *19* U

"4z M.-.4u-4N0.WV)4f-U W00.cc 0.- U.-L
Odo~jiIj~4C Uj _00. U. U-U U

M/.~ wwx0...O. wWWX * fU XLULI It Ntq1 * 4k 4X4J M1 99

Uw xZxu,..40: :O)tl.4 J F.** x if-.itU I- m "430CC-i

CLUS 4PWUJ rW J% %*0..- ci IOAWe. I-. C2~ 0 .v I it-c44

CU_ I-.-QUU UXX Z Wr 0.>-U. *O00..s 2 '.& _A0 L ILU.U.

un)Z W W 9 mI ) .0 * 0 U. t0. -. 1

9-'. 0.0....i...J.IO W -0.3 -0 4:0-LLL
0 UIINW~~~E . .a3N 3

UUJ 0EKZ3~4 I3XII :9 U NN



Liu

LU*

LU7

a.J *

N T I--I

Luj

Nrflx I.- u

000 000a. 0- I

+ -J -7-0

COG03:3xx-4* N*1000 04

339313 -,)O )3

3 30"POC 000o W -"
" -ft - + 1--C *q -

-WO.ooazj CO. - -

£JA- a 00 comaaa.QOO~wfr u WO-9 9J Q.*4 @U-
m9 * --- N~ '0* *MO Z X:- -Z z .- ! 7- 0* -wj

+P4jm 0.4UUW N 11 I-- CroX-L. -.7a*I%

x 1 C 0 3 2 ~~ 0 0 49 u*o C1 -S
I 0.000 0 4 4 XX X X - *-"11W-

-, ..- b .4.-0O00000 V WAS -a M WU*-

- .-I 9~C.)CiIJ0 9-C.135N



C36 0

I- t- c 03 )

X~ Z -a

I-J. J.X U

Zfr 0 - 0 t

Uc. C. 10 -j

'JO M Or t- 3 X0 a W

uL M- 0. Z%.W W

* ,4.14 ~ ~4~L0
x C~r-0 C

M-, ~4N(.O. am ccA COO. z

OA @'~- %b-I)L NIXe x~ a- a 3

Ln t. v4 LJCL OhQ..SA W...)4 M

UWC -- 0.- xKM ..J W 1-(

Z04f C pCJ .. jO04OOS GnZO %0 z

WZLZ0 A.L InP-0vsN flUIn I.- - t U-
le-~~~. I.- . ILU.L-A J U

NINUJ''JJJ*J OOO4J4I Wrz 0 2=

4w) U .0OOdJLC8nA 0*+~uL W -x W""

ZZO v--.-' XX ""WhC.).-' 0cc 00.. U.= t

N-OJ IW wwWW1-. W uW- '0000012 W~ zK 0
U-- CLZLO..L..j-.x~ uW)oL 0 + 333LL U- MW 04X

ujOO- * I-- wcYu.rNII* -O

E4<n~ XK ZKX~ i- 00 II O&LO W91 9 ~ ~ .

a.Szz 4ncjQw4joQOOU.Oc I.-Uw fU&AL..AA Z .. J OxQ

V~~jIVW 'fluvw1W

136

Omni,



-. -Li- --- C

Ww --

000000
533333u

44.444
x332£ 33 A ,-.g--
++ I I .+g 1
XXXXXX :LaG CLCILLz

32333232 ~ ~ ~ ~ ~ I IL 0122220.02.000O

2222322 .... I.I0..I0tO0000

I =9 AM M1 f tI 1 tNit1 f 01 1 1I O fI N If 11 ~ 0 0 .0 U COA X393
pi Nw w~ w p NI)Il v Q cl-t Tnrcvo~c~ n4r oa0af

N *S*~* .. www .~~~wt%~jI JN. 137 c

* ~~4~-4 4 0,A42



I--

U;

in

r--00

33

LU

.0. CL c
9 I- us

0UU, 000

%W z. " 0 -

X)0 PQ9

00 M- XO -wO
LU Co. W * *

.00 Z -W * * N

gill r '0 0%p OAL
9-Z LL. U Cc 0 OG =

3.5 - t J!Clo

.4 w

00 4Z '-LU **4P"UQ

* 0 I-.~ *138

A Lr W _t* o-



APPENDIX C

FRESNEL INTEGRALS

The Fresnel integral, important in the theory of diffraction, can

be written as:

(C-i) COO(.(x)L)A

Plotting this integral in the complex plane yields a curve known as

Cornu's spiral (figure C-i). The positive values of x appear in the

first quadrant and the negative values in the third. A vector drawn from

the origin to any point on the curve represents in both phase and

magnitude the value of the integral in equation (C-1). (The phase of the

vector is the negative of the phase of the integral.) Note from the

Cornu spiral that as x goes to infinity, C(x) and S(x) both converge

to one half.(7)

The integral in equation (C-i) can be expressed in terms of a series

expansion as:

(C-2a) Cr" Z Onj

The fact that the Fresnel integral is not expressible in closdd form

means that in application approximations to equation (C-1) must be

employed. One such approach has been developed by Boersma(2)

in which equation (C-1) is written with a change of variable (w-*v2)
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so that:

(C-3) C za ~ fa e w

Boersma's technique makes use of the following approximations:

5C-4b -LL) .)o

where the coefficients an, bn, cn and dn are derived by the f-method

of Lanczos and are provided in (2). The maximum error associated with

this approach is 1.6x10- 9 . This technique of evaluating the Fresnel

Integrals has been employed in the subroutine CS listed in Appendix A.

Other techniques and approximations are also available to evaluate

the Fresnel integrals; one of the more recent being presented by

James(5). James' approach is unique in that it employs one concise

approximate expression for all real values of the argument. The

technique is implementable on a pocket calculator and provides a

maximum amplitude error of eight per cent.
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APPENDIX D

COMPARISON OF FFT AND ELEMENTAL CELL EFFICIENCY

Given a sequence x(n) where n - 1,2 ..... (N-i), the Fourier

coefficients associated with the sequence can be represented by the

discrete Fourier transform (DFT):

An
(D-1) X(A): XZ() WA at A6 NI

where Wn - . A straightforward calculation using equation (D-i)

would require N2 operations where the term "operation" is taken to

man a complex multiplication followed by a complex addition. More

efficient methods are available for evaluating equation (D-1) which

require considerably fewer than N2 operations. Cooley and Tukey(8)

developed a technique which has lead to a class of algorithms known

as Fast Fourier Transforms (FFT's) which provided for the evaluation

of equation (D-1) in less than 2Nlog2N operations.

While the number of operations required is frequently used in DFT

and FFT analysis as a measure of computational complexity or efficiency,

it cannot easily be applied to the elemental cell model to establish

a common base for comparison. The actual time required for an FFT

* or elemental cell calculation can be compared.

Using the subroutine HARM (IBM Scientific Subroutine Library),

which is based on the algorithm of Cooley and Tukey(8), the Fourier

transforms of 50 signals were generated to determine the average

execution time of an N-point traniform where N -512, 1024, etc.

for each set of 50 signals.
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In similar fashion, the elemental cell spectra were generated for

each of the four classes of elemental cells using one hundred frequency

components. Table (D-l) lists the results of this analysis. In the

case of the FFT, as the size of the transform is doubled, the

time required for computation increases by approximately a factor of

two. This is in keeping with what would be predicted by the measure

of complexity discussed above. In the case of the elemental cell model,

the time required for computation increases with the sophistication

of the class of elemental cell.

In application, the time required to implement an FFT is a function

of the transform size(N), which is in turn a function of the problem

being addressed. The time required to implement the elemental cell

model, on the other hand, is not only a function of the problem

being addressed but also the nature of the elemental cells employed,

the number of cells used and the number of frequency components to

be generated. For example, the average execution time for an

elemental cell model composed of ten constant amplitude cells with

linear FM for which twenty spectral components are desired is

(10 x 20 x 6.10msec -) 1.22 seconds.

A graphical comparison of the execution times of the two

techniques appears in figure (D-l), in which execution time is

plotted as a function of the product of the number of elemental

" cells (n) and the number of frequency components required (m).

Nothing can be said unequivocally about the computational efficiency

of the elemental cell model vis-a-vis the FFT appzoach. Under

certain circumstances, when the transform size is large (e.g. greater

than 2K) and the product of m and n is small (e.g. less than 200)
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AVERAGE TIM TO EVALUATE AN N-POINT FFT

N TIME

512 0.22 sec

1024 0.47 sec

2048 0.88 sec

4096 1.81 sec

8192 4.01 sec

AVERAGE TIM TO EVALUATE AN ELEMENTAL CELL FOR ONE FREQUENCY

CLASS OF CELL TIKE

CONSTANT AM CONSTANT FM 3.72 msec

LINEAR AM CONSTANT FM 5.55 msec

CONSTANT AM LINEAR FM 6.10 msec

LINEAR AM LINEAR FM 8.85 msec

Table D-1 -Average Times for FFT and Elemental Cell

Calctaations
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TIME(se... 8K

--.--FFT

ELEMENTAL CELL (d)
(a) constant AM and FM
(b) linear AM; constant FM
(c) constant AM; linear FM
(d) linear AM and FM

3.0-/
(c)

(b)

2.0.,

4K

(a)

1.0-

- -1K

100 200 300 40n

n - number of cells
m - number of frequency components desired

Figure D-1 - FFT and Elemental Cell Execution Times
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speed can be obtained using the cell model at the cost of discriminating

the signal of interest.

It should be noted that in this analysis the subroutines used to

generate the elemental cell spectra are those listed in Appendix A

and that no attempt at time optimization has been made. In fact,

at the cost of efficiency, precision has been stressed. It is expected

that by modifying the existing subroutines to handle only the "right

hand" spectrum and to function in single vice double precision that the

execution time could be reduced by nearly a factor of four.
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